Short-baseline $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Oscillation Search with the NuMI Off-axis Beam

Ryan Patterson*
Caltech

Short Baseline Neutrino Workshop, FNAL 2011 May 13

* for Ryan Patterson and Mark Messier

NOvA detectors:

Designed for excellent ν_{ρ} CC identification

Fine-grained readout, low-Z materials, 80% active volume

- planes of 4 cm x 6 cm x 1560 cm PVC cells
- cells filled with liquid scintillator
- readout by WLS fiber / avalanche photodiode

Near: 0.2 kton, 16k channels

Short-baseline $(\overline{\nu}_{\mu}^{0} \rightarrow \overline{\nu}_{e}^{0})$ appearance with NuMI

 Future NuMI program already includes ν and ν̄ running

 $MiniBooNE~ar{
u}_{\mu} {
ightarrow} ar{
u}_{e}$ PRL **105** 181801 (2010)

Short-baseline $(\overline{\nu}_{\mu}^{0} \rightarrow (\overline{\nu}_{e}^{0}))$ appearance with NuMI

- Future NuMI program already includes ν and ν̄ running
- Off-axis flux has small highenergy tail
 - ⇒ reduction in NC background

Short-baseline $(\overline{\nu}_{\mu}^{0} \rightarrow \overline{\nu}_{e}^{0})$ appearance with NuMI

- Future NuMl program already includes ν and ν̄ running
- Off-axis flux has small highenergy tail
 - ⇒ reduction in NC background

- NO ν A intends to build a new near detector
 - ⇒ NDOS will become **free**

And, **NDOS design** is aimed at **electron (anti)neutrino searches**

 $\Delta m^2 \sim \text{few eV}^2$ and $E_{\nu} \sim 2 \text{ GeV}$ $\downarrow \downarrow$ $L \sim 1 \text{ to 2 km}$

Nominal placement: 1.6 km, 14 mrad (110 m deep)

Nominal placement: 1.6 km, 14 mrad (110 m deep)

NuMI/MINOS shaft, 105 meters (approx. costs)
\$4M + 15% (overruns) + 30% (inflation)

This shaft (even more approx.):

\$6.6M (110 m, out of plane) *or* **\$7.8M** (130 m, in plane)

Event spectra at 1.6 km

• Using **NOvA TDR efficiencies** (approx.; taken flat over *E*)

ν_e CC: 30%

 ν_{μ} CC: 0.2%

NC: 2%

(NC efficiency does not include energy cut)

- (6%) / (E / 2 GeV)^{0.5} energy resolution applied
- LSND-like $\overline{\nu}_e$ appearance probability is *small*
 - \circ $\overline{\nu}_u$ CC background particularly pesky given similar shape

For short-baseline osc....

Far and Near detectors take on non-traditional roles... (Next 3 pages)

Signal in **Far** →

(Neutrino parent decay locations are folded in using Flugg-based NuMI beamline simulation)

(Neutrino parent decay locations are folded in using Flugg-based NuMI beamline simulation)

(Neutrino parent decay locations are folded in using Flugg-based NuMI beamline simulation)

- Showing sensitivities on subsequent pages...
- Using a fit to the reconstructed energy spectrum (0.5 to 5.0 GeV)
- Assuming 3 years at 700 kW (18×10²⁰ p.o.t.) of antineutrino running
- Systematic errors
 are non-negligible!

Here are the errors taken \rightarrow

(Labeled "optimistic" on the plots that follow)

Efficiency and E-scale errors are important when "Far" and "Near" see approximately the same signal

Relative normalization	3%
Relative energy scale	2%
Absolute energy scale	5%
$ u_{\mu}$ CC efficiency NC efficiency $ u_{e}$ CC efficiency	5% 5% 5%
$ u_{\mu}$ right-sign flux norm.	5%
$ u_{\mu}$ wrong-sign flux norm.	10%
$ u_{e}$ right-sign flux norm.	5%
$ u_{e}$ wrong-sign flux norm.	10%

Some annotations...

Same detector technology at Far and Near site	Relative normalization Relative energy scale Absolute energy scale	3% 2% 5%
Perhaps ambitious?	$ u_{\mu}$ CC efficiency NC efficiency $ u_{e}$ CC efficiency	5% 5% 5%
Assuming flux \times XS constraints from (say) ν_{μ} CC channels	$ u_{\mu}$ right-sign flux norm. $ u_{\mu}$ wrong-sign flux norm. $ u_{e}$ right-sign flux norm. $ u_{e}$ wrong-sign flux norm.	5% 10% 5% 10%

To begin:

⇒ 20-ton fiducial mass NOvA detectors

New ND at 1 km
Existing ND at 1.6 km

 \Rightarrow 1st: stat. errors only

Note: showing 5σ C.L. " 2ν " $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ exclusion sensitivities throughout

(Other existing measurements left off these figures for clarity.)

To begin:

⇒ 20-ton fiducial mass NOvA detectors

New ND at 1 km
Existing ND at 1.6 km

Now with systematic errors

To begin:

⇒ 20-ton fiducial mass NOvA detectors

New ND at 1 km
Existing ND at 1.6 km

- Now with systematic errors
- ⇒ Perhaps safer error estimates:

Abs. E: $5\% \to 8\%$ ν_{μ} CC eff: $5\% \to 8\%$

 v_e CC eff: 5% \to 10% $^{10^{-2}}$ 10

RS flux: **5%** → **10**%

To begin:

⇒ 20-ton fiducial mass NOvA detectors

New ND at 1 km Existing ND at 1.

Now with systematic error: The existing detector (NDOS) cannot provide a definitive measurement

10

⇒ Perhaps safer error estimates:

Abs. E: **5%** → **8%**

 ν_{μ} CC eff: **5%** \rightarrow **8%**

 ν_e CC eff: 5% \rightarrow 10%

RS flux: $5\% \rightarrow 10\%$

1.0 km + 1.6 km NOvA

20-ton fid, \overline{v} mode, 5σ

— No systematic errors

– Optimistic errors − Nominal errors

Try a much bigger NOvA-style detector

⇒ 200-ton fiducial mass at the far site

No longer have the benefit of using an existing detector...

LAr detectors?

As good as the NOvA ν_e identification may be...

LAr should do much better

Consider LAr detectors in the NuMI off-axis beam

To begin (again):

⇒ 70-ton fiducial mass LAr detectors

Same detector design at 1 km and 1.6 km

- **⇒ MicroBooNE-scale**
- ⇒ Adds additional ND cavern (\$5M?) + two new detectors (driving cost!)

No good estimates of LAr TPC selection efficiencies. Thus...

Encapsulate the LAr improvement over NO ν A-style detectors as an increase in ν_e CC selection efficiency (30% \rightarrow 85%)

...keeping background efficiencies the same

Marked improvement

Marked improvement

Still systematics limited

A. $1 \times \mu$ -BooNE @ NuMI

B. $3 \times \mu$ -BooNE @ NuMI $1 \times \mu$ -BooNE @ Project-X

C. $9 \times \mu$ -BooNE @ NuMI $3 \times \mu$ -BooNE @ Project-X

Marked improvement

Still systematics limited

A. $1 \times \mu$ -BooNE @ NuMI

B. $3 \times \mu$ -BooNE @ NuMI $1 \times \mu$ -BooNE @ Project-X

C. $9 \times \mu$ -BooNE @ NuMI $3 \times \mu$ -BooNE @ Project-X

Quick note on baseline

- Have been using 1.6 km for FD
- Best location depends on:
 - → the physics model (of course)
 - → your favorite parameters
 - → the dominant systematics

Summary (p. 1)

- Placing the (existing) NO ν A NDOS at a 2-km baseline in the NuMI off-axis beam could (in principle) allow one to constrain LSND-like $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- **But!** Sensitivity appears grossly insufficient.
- However...

Summary (p. 2)

• A MicroBooNE-scale LAr detector 10 could work (!), especially if LAr efficiencies end up better than the estimates used here.

More sophisticated LAr efficiency and error estimates needed

 A companion LAr detector would potentially benefit NOvA (e.g., understanding the "deep" backgrounds)

Promising reach!

(Remember: 5σ C.L. exclusion contours shown)

Backups

 5σ and 90% C.L. curves together

(70-ton LAr)

